Machine Learning

Data Science Roadmap – How to become a Data Scientist? (6 month self study plan)

Today, I discuss the Data Science Roadmap, the missing guide to self study machine learning. I’ll discuss what exactly you need to know and do in order to self study Data science / ML / AI / Stats. I will provide you with some of the best resources for each topic, why you need to …

Data Science Roadmap – How to become a Data Scientist? (6 month self study plan) Read More »

Why learn the math behind Machine Learning and AI?

Why learn the math behind machine learning algorithms when you can readily implement it using the python libraries like scikit-learn, h2o, statsmodels etc? This is a fair question especially coming from beginners when it is easy to implement ML with few lines of code and get the results fast. Now, you must understand that learning …

Why learn the math behind Machine Learning and AI? Read More »

Mistakes programmers make when starting machine learning

Today, I want to discuss some of the common mistakes that programmers make when starting to learn machine learning. But first, let me speak about why software engineers should start looking into ML. First, let’s see why programmers should start ML? Today, from what I’ve seen, people coming with a strong software engineering background, good …

Mistakes programmers make when starting machine learning Read More »

Machine Learning Use Cases – The Big List of Real World Applications by Vertical and Industry

The use cases of machine learning to real world problems keeps growing as ML/AI sees increased adoption across industries. However, there are certain core use cases that add lot of value for organizations and you’ll often find them being implemented in banks, healthcare, manufacturing, product companies or by consulting organizations as well. Let’s tour of …

Machine Learning Use Cases – The Big List of Real World Applications by Vertical and Industry Read More »

Linear Regression in Machine Learning – Clearly Explained

    In this lesson, I introduce what Linear regression is all about. Linear Regression is a foundational algorithm for machine learning and statistical modeling. Traditionally, Linear Regression is the very first algorithm you’d learn when getting started with predictive modeling. While there are a lot more ML and Deep learning algorithm in use today, …

Linear Regression in Machine Learning – Clearly Explained Read More »

Linear Regression in Machine Learning – Clearly Explained

Understanding linear regression. Let’s understand what linear regression is all about from a non-technical perspective, before we get into the details, we will first understand from a layman’s terms what linear regression is. Now, linear regression is a machine learning algorithm ml algorithm that uses data to predict a quantity of interest, typically, we call …

Linear Regression in Machine Learning – Clearly Explained Read More »

Nebullvm Workflow

Nebullvm – Tutorials and benchmarks on Nebullvm, the open-source deep learning inference accelerator

Nebullvm is an open-source library that takes a deep learning model as input and outputs an optimized version that runs 5-20 times faster on your machine. Nebullvm tests multiple deep learning compilers to identify the best possible way to execute your model on your specific hardware, without impacting the accuracy of your model (GitHub link). …

Nebullvm – Tutorials and benchmarks on Nebullvm, the open-source deep learning inference accelerator Read More »

An Introduction to Gradient Boosting Decision Trees

Gradient Boosting is a machine learning algorithm, used for both classification and regression problems. It works on the principle that many weak learners(eg: shallow trees) can together make a more accurate predictor. How does Gradient Boosting Work? Gradient boosting works by building simpler (weak) prediction models sequentially where each model tries to predict the error …

An Introduction to Gradient Boosting Decision Trees Read More »

Bias Variance Tradeoff Cover Image

Bias Variance Tradeoff – Clearly Explained

Bias Variance Tradeoff is a design consideration when training the machine learning model. Certain algorithms inherently have a high bias and low variance and vice-versa. In this one, the concept of bias-variance tradeoff is clearly explained so you make an informed decision when training your ML models Bias Variance Tradeoff – Clearly Explained. Photo by …

Bias Variance Tradeoff – Clearly Explained Read More »

Gradient Boosting – A Concise Introduction from Scratch

Gradient Boosting is a machine learning algorithm, used for both classification and regression problems. It works on the principle that many weak learners (eg: shallow trees) can together make a more accurate predictor. A Concise Introduction to Gradient Boosting. Photo by Zibik How does Gradient Boosting Works? Gradient boosting works by building simpler (weak) prediction …

Gradient Boosting – A Concise Introduction from Scratch Read More »

Feature image for Portfolio optimization

Portfolio Optimization with Python using Efficient Frontier with Practical Examples

Portfolio optimization in finance is the technique of creating a portfolio of assets, for which your investment has the maximum return and minimum risk. Investor’s Portfolio Optimization using Python with Practical Examples. Photo by Markus In this tutorial you will learn: What is portfolio optimization? What does a portfolio mean? What are assets, returns and …

Portfolio Optimization with Python using Efficient Frontier with Practical Examples Read More »

Tensorflow

TensorFlow vs PyTorch – A Detailed Comparison

Compare the popular deep learning frameworks: Tensorflow vs Pytorch. We will go into the details behind how TensorFlow 1.x, TensorFlow 2.0 and PyTorch compare against eachother. And how does keras fit in here. Table of Contents: Introduction Tensorflow: 1.x vs 2 Difference between static and dynamic computation graph Keras integration or rather centralization What is …

TensorFlow vs PyTorch – A Detailed Comparison Read More »

Principal Component Analysis – How PCA algorithms works, the concept, math and implementation

Principal Components Analysis (PCA) is an algorithm to transform the columns of a dataset into a new set of features called Principal Components. By doing this, a large chunk of the information across the full dataset is effectively compressed in fewer feature columns. This enables dimensionality reduction and ability to visualize the separation of classes …

Principal Component Analysis – How PCA algorithms works, the concept, math and implementation Read More »

Feature Selection – Ten Effective Techniques with Examples

In machine learning, Feature selection is the process of choosing variables that are useful in predicting the response (Y). It is considered a good practice to identify which features are important when building predictive models. In this post, you will see how to implement 10 powerful feature selection approaches in R. Introduction 1. Boruta 2. …

Feature Selection – Ten Effective Techniques with Examples Read More »

Caret Package

Caret Package – A Practical Guide to Machine Learning in R

Caret Package is a comprehensive framework for building machine learning models in R. In this tutorial, I explain nearly all the core features of the caret package and walk you through the step-by-step process of building predictive models. Be it a decision tree or xgboost, caret helps to find the optimal model in the shortest …

Caret Package – A Practical Guide to Machine Learning in R Read More »

Evaluation Metrics for Classification Models – How to measure performance of machine learning models?

Choosing the right evaluation metric for classification models is important to the success of a machine learning app. Monitoring only the ‘accuracy score’ gives an incomplete picture of your model’s performance and can impact the effectiveness. So, consider the following 15 evaluation metrics before you finalize on the KPIs of your classifier model. Introduction: Building …

Evaluation Metrics for Classification Models – How to measure performance of machine learning models? Read More »

Course Preview

Machine Learning A-Z™: Hands-On Python & R In Data Science

Free Sample Videos:

Machine Learning A-Z™: Hands-On Python & R In Data Science

Machine Learning A-Z™: Hands-On Python & R In Data Science

Machine Learning A-Z™: Hands-On Python & R In Data Science

Machine Learning A-Z™: Hands-On Python & R In Data Science

Machine Learning A-Z™: Hands-On Python & R In Data Science